Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cell Rep Med ; : 100834, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2120103

ABSTRACT

The emergence of the antigenically distinct and highly transmissible Omicron variant highlights the possibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune escape due to viral evolution. This continued evolution, along with the possible introduction of new sarbecoviruses from zoonotic reservoirs, may evade host immunity elicited by current SARS-CoV-2 vaccines. Identifying cross-reactive antibodies and defining their epitope(s) can provide templates for rational immunogen design strategies for next-generation vaccines. Here, we characterize the receptor-binding-domain-directed, cross-reactive humoral repertoire across 10 human vaccinated donors. We identify cross-reactive antibodies from diverse gene rearrangements targeting two conserved receptor-binding domain epitopes. An engineered immunogen enriches antibody responses to one of these conserved epitopes in mice with pre-existing SARS-CoV-2 immunity; elicited responses neutralize SARS-CoV-2, variants, and related sarbecoviruses. These data show how immune focusing to a conserved epitope targeted by human cross-reactive antibodies may guide pan-sarbecovirus vaccine development, providing a template for identifying such epitopes and translating to immunogen design.

2.
Clin Infect Dis ; 74(6): 1081-1084, 2022 03 23.
Article in English | MEDLINE | ID: covidwho-1707490

ABSTRACT

The clinical significance of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) RNA in stool remains uncertain. We found that extrapulmonary dissemination of infection to the gastrointestinal tract, assessed by the presence of SARS-CoV-2 RNA in stool, is associated with decreased coronavirus disease 2019 (COVID-19) survival. Measurement of SARS-CoV-2 RNA in stool may have utility for clinical risk assessment.


Subject(s)
COVID-19 , SARS-CoV-2 , Feces , Gastrointestinal Tract , Humans , RNA, Viral , SARS-CoV-2/genetics
3.
Sci Immunol ; 6(66): eabl5842, 2021 Dec 10.
Article in English | MEDLINE | ID: covidwho-1467664

ABSTRACT

Initial exposure to a pathogen elicits an adaptive immune response to control and eradicate the threat. Interrogating the abundance and specificity of the naive B cell repertoire drives understanding of how to mount protective responses. Here, we isolated naive B cells from eight seronegative human donors targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (RBD). Single-cell B cell receptor (BCR) sequencing identified diverse gene usage and no restriction on complementarity determining region length. A subset of recombinant antibodies produced by naive B cell precursors bound to SARS-CoV-2 RBD and engaged circulating variants including B.1.1.7, B.1.351, and B.1.617.2, as well as preemergent bat-derived coronaviruses RaTG13, SHC104, and WIV1. By structural characterization of a naive antibody in complex with SARS-CoV-2 spike, we identified a conserved mode of recognition shared with infection-induced antibodies. We found that representative naive antibodies could signal in a B cell activation assay, and by using directed evolution, we could select for a higher-affinity RBD interaction, conferred by a single amino acid change. The minimally mutated, affinity-matured antibodies also potently neutralized SARS-CoV-2. Understanding the SARS-CoV-2 RBD­specific naive repertoire may inform potential responses capable of recognizing future SARS-CoV-2 variants or emerging coronaviruses, enabling the development of pan-coronavirus vaccines aimed at engaging protective germline responses.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/immunology , Coronavirus/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antigens, Viral/immunology , B-Lymphocytes/metabolism , COVID-19/immunology , COVID-19 Vaccines/immunology , Epitopes , Humans , Lymphocyte Activation , SARS-CoV-2/classification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
4.
Immunity ; 54(2): 235-246.e5, 2021 02 09.
Article in English | MEDLINE | ID: covidwho-988081

ABSTRACT

The interleukin-6 (IL-6) membrane receptor and its circulating soluble form, sIL-6R, can be targeted by antibody therapy to reduce deleterious immune signaling caused by chronic overexpression of the pro-inflammatory cytokine IL-6. This strategy may also hold promise for treating acute hyperinflammation, such as observed in coronavirus disease 2019 (COVID-19), highlighting a need to define regulators of IL-6 homeostasis. We found that conventional dendritic cells (cDCs), defined in mice via expression of the transcription factor Zbtb46, were a major source of circulating sIL-6R and, thus, systemically regulated IL-6 signaling. This was uncovered through identification of a cDC-dependent but T cell-independent modality that naturally adjuvants plasma cell differentiation and antibody responses to protein antigens. This pathway was then revealed as part of a broader biological buffer system in which cDC-derived sIL-6R set the in-solution persistence of IL-6. This control axis may further inform the development of therapeutic agents to modulate pro-inflammatory immune reactions.


Subject(s)
Dendritic Cells/immunology , Interleukin-6/blood , Interleukin-6/immunology , ADAM17 Protein , Animals , Cell Differentiation , Immunity, Humoral , Immunoglobulin M/immunology , Inflammation , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/immunology , Interleukin-6/genetics , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plasma Cells/immunology , Receptors, Interleukin-6/blood , Receptors, Interleukin-6/immunology , Signal Transduction/immunology , Toll-Like Receptor 4/immunology , Toll-Like Receptor 7/immunology
SELECTION OF CITATIONS
SEARCH DETAIL